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Notions of topological dy

Let G be a topological group.

Definition
The group G is extremely amenable if every continuous action of
G on a compact space admits a fixed point.

Definition
The group G is amenable if every continuous action of G on a
compact space admits an invariant Borel probability measure.
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Every closed subgroup of Sy, is the
automorphism group of a countable ultrahomogeneous
structure: of a Fraissé structure.

A Fraissé class is the class of all finite structures that embed
into a given Fraissé structure.

Every Polish group is the automorphism group of a
metric Fraissé structure, that is, a Polish metric structure that
is approximately ultrahomogeneous.

A metric Fraissé class ( ) is the class of all finite
metric structures that embed into a given metric Fraissé
structure.



Characterization in the classica

Let M a countable Fraissé structure and let KC be the associated
Fraissé class.

Theorem (Moore, 2011)

Aut(M) is amenable if and only if K has the convex Ramsey
property.
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The Ramsey proper

o If A and B are two structures in C, denote by Emb(A, B) the
set of all embeddings of A into B.

o Think of Emb(A, B) as the set of copies of Ain B.

Definition

The class KC has the Ramsey property if

for every k € N, for every A and B in I,

there exists C in K such that for every coloring f : Emb(A, C) — k,
there exists 8 € Emb(B, C) such that

f in constant on o Emb(A, B).

Theorem (Kechris - Pestov - Todor&evi¢, 2005)

Aut(M) is extremely amenable if and only if K has the Ramsey
property.
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Let M be a metric Fraissé structure and let K be the associated
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Theorem (K., 2013)
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Definition

The class K has the metric convex Ramsey property if
for every € > 0, for every A and B in K,
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The metric convex

Definition

The class K has the metric convex Ramsey property if

for every € > 0, for every A and B in K,

there exists C in K such that

for every 1-Lipschitz coloring f : Emb(A, C) — [0, 1],
n

there exist coefficients A1, ..., A\, > 0 with Z)\,- =1 and
i=1
B1, ..., Bn € Emb(B, C) such that for every o,/ € Emb(A, B),

Z)\if(ﬁi oa) — ZA,-f(ﬁ,- od)| <e.
i=1

i=1

1-Lipschitz coloring: for every a, o/ € Emb(A, C),

() = ()] < sup d(a(a), o/ (a)).
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Melleray-Tsankov, 2011: Aut(M) is extremely amenable if and
only if K has the Ramsey property.

We only have the ultrahomogeneity. Regularity
of colorings allows us to take care of the epsilons.

Besides, the limit of 1-Lipschitz maps is still 1-Lipschitz so
this assumption also allows us to carry out compactness
arguments.

For the implication .

because of these regularity restrictions, Moore's proof cannot
adapt.

Main tool: Lipschitz functions are dense in uniformly
continuous ones for the topology of uniform convergence.



Amenability is a G5 con

Melleray and Tsankov proved, in 2011, that extreme amenability is
a G; condition (in the following sense), and the same is true of
amenability.

Theorem (K., 2013)

Let [ be a countable group and G be a Polish group.
Then the set

{m € Hom(l', G) : w(I') is amenable for the topology induced by G}

is Gs in Hom(T, G).
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y

The same is true for extreme amenability with multiplicative linear
forms.
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